3.271 \(\int \frac {\sqrt {1-c^2 x^2}}{a+b \cosh ^{-1}(c x)} \, dx\)

Optimal. Leaf size=139 \[ \frac {\sqrt {1-c x} \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{2 b c \sqrt {c x-1}}-\frac {\sqrt {1-c x} \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{2 b c \sqrt {c x-1}}-\frac {\sqrt {1-c x} \log \left (a+b \cosh ^{-1}(c x)\right )}{2 b c \sqrt {c x-1}} \]

[Out]

1/2*Chi(2*(a+b*arccosh(c*x))/b)*cosh(2*a/b)*(-c*x+1)^(1/2)/b/c/(c*x-1)^(1/2)-1/2*ln(a+b*arccosh(c*x))*(-c*x+1)
^(1/2)/b/c/(c*x-1)^(1/2)-1/2*Shi(2*(a+b*arccosh(c*x))/b)*sinh(2*a/b)*(-c*x+1)^(1/2)/b/c/(c*x-1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 178, normalized size of antiderivative = 1.28, number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {5713, 5701, 3312, 3303, 3298, 3301} \[ \frac {\sqrt {1-c^2 x^2} \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c x)\right )}{2 b c \sqrt {c x-1} \sqrt {c x+1}}-\frac {\sqrt {1-c^2 x^2} \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c x)\right )}{2 b c \sqrt {c x-1} \sqrt {c x+1}}-\frac {\sqrt {1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{2 b c \sqrt {c x-1} \sqrt {c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - c^2*x^2]/(a + b*ArcCosh[c*x]),x]

[Out]

(Sqrt[1 - c^2*x^2]*Cosh[(2*a)/b]*CoshIntegral[(2*a)/b + 2*ArcCosh[c*x]])/(2*b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x])
- (Sqrt[1 - c^2*x^2]*Log[a + b*ArcCosh[c*x]])/(2*b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (Sqrt[1 - c^2*x^2]*Sinh[(
2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcCosh[c*x]])/(2*b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5701

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbo
l] :> Dist[(-(d1*d2))^p/c, Subst[Int[(a + b*x)^n*Sinh[x]^(2*p + 1), x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c
, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && IGtQ[p + 1/2, 0] && (GtQ[d1, 0] && LtQ[d2, 0]
)

Rule 5713

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((-d)^IntPart[p]*(
d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(1 + c*x)^p*(-1 + c*x)^p*(a + b*Ar
cCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[c^2*d + e, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\sqrt {1-c^2 x^2}}{a+b \cosh ^{-1}(c x)} \, dx &=\frac {\sqrt {1-c^2 x^2} \int \frac {\sqrt {-1+c x} \sqrt {1+c x}}{a+b \cosh ^{-1}(c x)} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {\sqrt {1-c^2 x^2} \operatorname {Subst}\left (\int \frac {\sinh ^2(x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\sqrt {1-c^2 x^2} \operatorname {Subst}\left (\int \left (\frac {1}{2 (a+b x)}-\frac {\cosh (2 x)}{2 (a+b x)}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\sqrt {1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{2 b c \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\sqrt {1-c^2 x^2} \operatorname {Subst}\left (\int \frac {\cosh (2 x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{2 c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\sqrt {1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{2 b c \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (\sqrt {1-c^2 x^2} \cosh \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cosh \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{2 c \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (\sqrt {1-c^2 x^2} \sinh \left (\frac {2 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sinh \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{2 c \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {\sqrt {1-c^2 x^2} \cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c x)\right )}{2 b c \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\sqrt {1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{2 b c \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\sqrt {1-c^2 x^2} \sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 a}{b}+2 \cosh ^{-1}(c x)\right )}{2 b c \sqrt {-1+c x} \sqrt {1+c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 105, normalized size = 0.76 \[ \frac {\sqrt {-((c x-1) (c x+1))} \left (\cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (2 \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )\right )-\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\cosh ^{-1}(c x)\right )\right )-\log \left (a+b \cosh ^{-1}(c x)\right )\right )}{2 b c \sqrt {\frac {c x-1}{c x+1}} (c x+1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[1 - c^2*x^2]/(a + b*ArcCosh[c*x]),x]

[Out]

(Sqrt[-((-1 + c*x)*(1 + c*x))]*(Cosh[(2*a)/b]*CoshIntegral[2*(a/b + ArcCosh[c*x])] - Log[a + b*ArcCosh[c*x]] -
 Sinh[(2*a)/b]*SinhIntegral[2*(a/b + ArcCosh[c*x])]))/(2*b*c*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x))

________________________________________________________________________________________

fricas [F]  time = 0.51, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-c^{2} x^{2} + 1}}{b \operatorname {arcosh}\left (c x\right ) + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*x^2 + 1)/(b*arccosh(c*x) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-c^{2} x^{2} + 1}}{b \operatorname {arcosh}\left (c x\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x, algorithm="giac")

[Out]

integrate(sqrt(-c^2*x^2 + 1)/(b*arccosh(c*x) + a), x)

________________________________________________________________________________________

maple [A]  time = 0.18, size = 227, normalized size = 1.63 \[ \frac {\sqrt {-c^{2} x^{2}+1}\, \left (-\sqrt {c x +1}\, \sqrt {c x -1}\, x c +c^{2} x^{2}-1\right ) \Ei \left (1, 2 \,\mathrm {arccosh}\left (c x \right )+\frac {2 a}{b}\right ) {\mathrm e}^{\frac {b \,\mathrm {arccosh}\left (c x \right )+2 a}{b}}}{4 \left (c x +1\right ) \left (c x -1\right ) c b}+\frac {\sqrt {-c^{2} x^{2}+1}\, \left (-\sqrt {c x +1}\, \sqrt {c x -1}\, x c +c^{2} x^{2}-1\right ) \Ei \left (1, -2 \,\mathrm {arccosh}\left (c x \right )-\frac {2 a}{b}\right ) {\mathrm e}^{\frac {b \,\mathrm {arccosh}\left (c x \right )-2 a}{b}}}{4 \left (c x +1\right ) \left (c x -1\right ) c b}-\frac {\sqrt {-c^{2} x^{2}+1}\, \ln \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )}{2 \sqrt {c x -1}\, \sqrt {c x +1}\, c b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x)

[Out]

1/4*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,2*arccosh(c*x)+2*a/b)*exp((b*arccosh(
c*x)+2*a)/b)/(c*x+1)/(c*x-1)/c/b+1/4*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,-2*a
rccosh(c*x)-2*a/b)*exp((b*arccosh(c*x)-2*a)/b)/(c*x+1)/(c*x-1)/c/b-1/2*(-c^2*x^2+1)^(1/2)/(c*x-1)^(1/2)/(c*x+1
)^(1/2)/c*ln(a+b*arccosh(c*x))/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-c^{2} x^{2} + 1}}{b \operatorname {arcosh}\left (c x\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x)),x, algorithm="maxima")

[Out]

integrate(sqrt(-c^2*x^2 + 1)/(b*arccosh(c*x) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {1-c^2\,x^2}}{a+b\,\mathrm {acosh}\left (c\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - c^2*x^2)^(1/2)/(a + b*acosh(c*x)),x)

[Out]

int((1 - c^2*x^2)^(1/2)/(a + b*acosh(c*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )}}{a + b \operatorname {acosh}{\left (c x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*x**2+1)**(1/2)/(a+b*acosh(c*x)),x)

[Out]

Integral(sqrt(-(c*x - 1)*(c*x + 1))/(a + b*acosh(c*x)), x)

________________________________________________________________________________________